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ABSTRACT 

The mechanism of heat transfer in forced-convec- 
tion sttbcooled nucleate boiling i s  considered. A three-step 
modcl i s  pmposed. First ,  the heat flows from the wafl into 
the adjacent liquid by two parallel paths: (a) the portion of 
the wall area which i s  periodically covered by bubbles i s  
primarily cooled by quenching, due to colder liquid rushing 
in a s  the bubbles collapse; (b) over the remainder of the 
wall area, convective heat transfer i s  induced primarily by 
the stirrins effect of the bubS!es. Secondly, heat Rows 
through the two-phase wall layer, partly by turbutent con- 
vection in the liquid between the bubbles, and partly by 
l atent heat transpor, within the bubbles themselves. Finally, 
the hcat flows by t d u l e n t  convection from the edpe of the 
two-phase wall layer into the turbulent core. Simplified ex- 
pressions are deduced for the first and third steps, which 
e v e  wasnnahle ageement with Cunther's data. The rela- 
tive importance of latent heat t ranspr t  is a s  yet uncertain, 
hut  it i s  shown to be very likely significant in comparison 
with the heat flow through the liquid between the bubbles. 
I ~ x ~ ~ r c s ~ i o n s  are deduced for the quenching heat flux and 
and t l i r  mean velocity induced by the bubbles. The liquid 
temperature at the edge of the two-phase wall layer i s  com- 
puteci for Cunther's data and i s  found to rise s h a ~ l y  towards 
the saturation temperature a s  burnout i s  approached. This  
signifies that the maximum heat flux coincides with the 
appearance of a fairly thick layer of warm water next to the 
wall, possibly due to the inability of the turbulent core 
liquid to remove the heat a s  fast a s  i t  is transmitted thmu& 
the two-phase wall layer. 

The heat flow expressions which have been derived 
are quite approximate; considerably mow data on the local 
parameters in subcooled nucleate boiling are required before 
t l ~ ~ )  can be put on a firm footing. On the other hand. the 
three-step model i s  not considered to be speculative; i t  is,  
in fact, a sirnp'e statement of the physical situation in 
highly subcooled nucleate Boiling. 



I. INTRODUCTION 

It i s  the intent of this work to construct P potentielly useful model for the hegt flow in 

subcooied nucleate loiling. The model i s  limited to subcooled boiling, for B e  simple reason that 

the only reasonably complete data on bubble parameters are frorn Gnnther's work on forced-convec- 

tion subcooled boiling of water a t  eeeentially atmospheric pressure Ceee Ref. 1). Crude a s  thia 

model necessarily is, in view of the severely limited quantity of experimental i n fma t iou ,  a 

number o! interestine aspects are developed in its fnnnulrtioa; end it is hoped thet its presentation 

will stimulate further quantitative meseurements of the local parameters in boiling which ut so 

sorely needed for a fuller anderatanding of this complex phenomenon, 

II. PRELIMINARY CONSIDERATIOXS 

Nucleate boiling i s  characterized by the presence of favored locations for bubble formation, 

or nuclei, on the hea th8  surface. Portions of the ebullition surface which arc in the immediate 

neighborhood of a nucleus are periodically covered by bubbles, s o  that they are alternately in 

contact with vapor and then with liquid. On the other hand, portions of the ebullition surface which 

are at some distance frorn any nucleus will always be in contact with liquid. It  i s  evident that the 

heat transfer from these two portions of the surface proceeds by different mechoniams, so that one 

may write: ' 

where qs i s  the total heat flux, j' is the fraction of the surface which i s  i n  contact 

with bubbles, i s  the heat flux kom this portion of the surface, and g, is the heat flux &on? 

the remainder of the suriace. The star  symbol denotes that the heat flux is calculated on the basis 



of the actual heat-tranefer surface. ~ h e r e a s  the absence of a star denotes that i t  is calculated on 

the t a s i s  of the total wall area. 

Alternatively, one may write, a t  any instant: 

qr = q ; ~  + q:(1  - F) = q* + qc 

where qb i s  the heat flux from the surface beneath the bubbles, qc i s  the convec:ive heat flux 

from the surface between the bubbles at  any instant, end F i s  the instantaneous fraction of the 

surface covered with bubbles. Ilere F i s  a stochastic variable; but, if a large enough heating 

surface i s  employed, the space-nean fraction of the surface covered may be equated to the time- 

mean fraction of the surface covered, in accordance with the ergodic hypothesis (see Refs. 2 and 

3). i t  should be carefully noted that thc ye equations apply to the heat transfer from the wall to 

the inner portion of the two-phase wall iayer, which i s  hrre arbitrarily defined to be the layer next 

to the wall of thickness equal to R,, the mean maximum bubble radius. (See Fig. 1.) The flow 

from the inner to the outer portion of the layer i s  quite distinct from that of the outer portion of 

this  layer to the turbulent core liquid. 

It i s  usually considered that 

since heat-transfer coefficients from solids to gases are very much l e s s  than those from solids 

to liquids. In this sense each bubble i s  considered to be an insulating spot on the wall surface. 

SINGLE - PHASE CORE 
----- 

.=-=-=----- 
--- 

T%O - PHASE 
WALL LAYER 

HEATING SURFACE 

Fig. 1. Dia,m~rnrn~t ic  Skrtrh of Went F l o w  from P?nlt into Twn-l"hasr Layer 



This may not be  strictly true if  there is an appreciable liquid film a t  the base of each bubb!e. 

(See Ref, 4,) 

Rannie i s  sa id  (Ref. 5 )  to have called attention to the fact that a principal mode of hea t  

t ransfer  may resul t  from the periodic contact of relatively cold liquid with dry spo ts  which were 

formerly covered by bubbles. T o  express  th 's  quantitatively, it  may be noted that a t  any instant  

t h e  fraction of the surface which was formerly dry, and i s  now in contact with quenching liquid, 

i s  (/ - F). From the  portion of the surface which i s  never covered by bubbles, convective h e a t  

flow dominates. Ifence, considering Eqs. (2) and (31, 

can b e  obtained. 

fieat fliixs frsni the inner to the outer portion o i  the two-phase wall layer will be denoted 

by the superscript 1 and thence to  the turbulent ingle-phase core liquid by the superscript 2 

Tben, the heat  flow through the  t w o p h a s c  wall layer  may be written 

where qbl' i s  the heat  flux due t o  vaporization of liquid a t  the inner portion of the wall l ayer  and 

condensation a t  the outer portion; and .I1' i s  the convective heat transport through the liquid 

between the bubbles. i t  h a s  been frequently s ta ted  that  

but, a s  will be shown, the evidence for th i s  hypothesis  i s  not conclusive. Actually, probsblp 
' 

neither of these  heat  fluxes i s  negligible. 

Finally, the convective heat  flux from the outer portion of the two-phase wall leyer to  the 

turbulent single-phase core may be m i t t e a  



Tsien  i s  said (Ref, 6) to have pointed out that the bubbles act  a s  roughness element in 

increasing loth f luid friction end heat transfer. T h e  interaction of the bubbles and the flowing 

stream determines q(e?' in Eq. (7). 

An attcnjpt will be made to formulate expressions for these heat fluxes. Refore entering 

upon this  task,  however, it is advisable to  review the question of the relative magnitudes of the 

la tent  heat transport and the convective beat f l ux  between the  bubbles (Eq. 6). 



iit. LATENT HEAT TRANSPQRT VS STIRRING 

Several investigators (Refs. 7 and 8 )  have observed that the rate of visible vapor 

evolution in subcooled nucleate boilir~g can account for only a small fraction ( 1  to 2%) of the total 

heat flux. If it  is assumed that the bubbles are surrounded by a stagnant laminar film a s  they 

grow and collapse, it can also be shown that mass flow within the bubbles, due to simultaneous 

vaporization a t  the equator and condensation a t  the pole, i s  a lso  a second-order effect. It i s  not 

true, however, that the heat flow from the bubble condensing surfaces i s  dominated by laminar 

conduction through a stagnant film. Rankoff and \likesell (Refs. 9 and 10) have extended the 

laminar Plesset-Zwick bubble growth solution (Ref. 11) to include an initially nonuniform temper- 

ature distribution around the bubble; the resulting nolution can be fitted closely to saturated 

surface boiling data, but not to subcooled boiling. It i s  further pointed out that the time-irteversi- 

bility inherent in the laminar-heat-conduction equation is  inconsistent with the symmetrical growth 

and collapse periods observed in hiphly subcoolcd nttclcn-te boi!ing. If it is  erraumed, however, 

that turbulent and convective heat transfer dominates in removing heat from the condensing bubble 

surfaces, predictions can be made which are in pond agreement with the trecds exhibited by 

Cunther9s and Ellion's data (Refs. 1 and 12). From wel!-known empirical equations for the heat- 

transfer coefficient of a single sphere suspended in a turbulent stream (Ref. 13) it i s  estimated 

that the latent heat transport represents at least 10% of the total heat !lux. \Ieasurements of 

turbulentheat-transfer coefficients from single and multiple bubbles are needed to resolve tJ 

uncertainty. 

Another simple argument can be adduced to show that the stirring erfect of the bubbles 

does not account for all of the heat flux. A s  more skrface nuclei become active, upon increasing 

the surface temperature, the bubble population and the stirring effect of the bubklGs increase. 

Hence. t h ~ !  total heat flux increases, even though more of the surface i s  covered a t  any time by 

bubbles, which act  essentially a s  insulating spots. A s  the bubble population continues to increase, 

a point i s  reached where the increased heat flux due to stirring i s  just offset by the decrease in 

the instantaneous wetted area of the surface. This represents the maximum nucleate boiling heat 

f lux ,  popularly called "burnout." The more rapidly the bubbles grow, the iitore vigorous will be ' 

the stirring, and the greater will be the maximum flux. However, the moximum flux in saturated 

pool boiling increases with pressure up to a reduced pressure of about 0.35 (Ref. 14), even though 

the meafi bubble wall velocity decreases continuously with increased pressure. This means that 

the stirring effect of the bubbles i s  not the sole controlling factor. Significantly, we may note 

that the volumetric latent heat content of the vapor (Apt , ,  where X is the latent heat and p,, is 

the densi ty  of the vapor) has a maximum in the  range of *educed preesvres of 0.3 to 0.7. 

This latter observation can be expanded by a simple calculation. It i s  instructive to 

estimate the vapor flow which would result if the equatorial and polar regions of the bubbles 



could LE miiintiiined at different we!! temperatures, by whatever ntcrhtlnism. Plessetqs solution 

(Ref. 151 of the poblem of the steady-state one-dimensional flow of vapor between two liquid 

surfaces held at  diflerent temperatures i s  employed. 'Ihe heat flux due to flow of vapor between 

a wann liquid surface ut tenlperaturc To ,  and a colder surface at temperature, T 2 ,  is given by: 

where c i s  the accommodation coefficient, X ia the latent heat, Al i s  the molecular weight of the 

vapor, and po,. and p 2 ,  are the equilibrium or saturation vapor densities at the liquid surface 

temperatures, To and T2, respectively. For this rough calculation, it i s  assunied that the vapor 

transport ran be satisfactorily approximated by a one-dimensional calculation and that the evopo- 

rative zone, near and a t  the base of the bubble, i s  about equal in area to the condensing zone near 

the polar cap. Temperature To may be veater  than T 2  for several reasons: (1) a thin liquid film 

nlay separate the spreading bubble from the wall (Ref. 41, (2) the expanding bubble receives a 

continuous new supply of superheated liquid near i t s  base, and (3) the polar cap is cooled by 

turbulent convection. For this illustration, assume To to be equal to the wall temperature, T,, 

and T q  to be equal to the saturation temperature T,,#. Cichelli and Ronilla (Ref. 14) have 

measured the wall superheat and heat flux a t  maximum pool nucleate boiling rates for five organic 

liquids. Their data for the wall superheat are closely approximated by an expression of the form 

where pr i s  the reduced pressure d the system. Equations (8) and (9)  were used to calculate 9, 

for pentane, assuming e = 1 and F = 0.005 (the latter choice i s  quite arbitrary, and i s  intended 

to fit the data. l t s  smalffiess. however, i s  significant, since at  maximum flux at  least one-third of 

the surface i s  covered with bubbles). The results are shown in Fig. 2. I t  is seen that Eq. (8) 

exhibits the same characteristic maximum burnout flux a s  the data and can be made to fit these 

data quite closely. Calculations for other organic liquids give similar behavior. %is  crude 

calculation i s  not intended to suggest that all the heat a t  maximum heat flux conditions i s  trans- 

ported a s  latent Aeet; but it  does strongly suggest that this mode of heal tPaasport i s  ~ o t  

insignificant, 

Finally, some interesting anrrlogieo to nucleate b i l i n g  may be examined which may she4 

some light on this subject. A parallelism between nucleate boiling and a diffusion-con~olled 



Fig. 2.   la xi mum Heat Flux in the Pool RoilinR of n-Pentane: Data of 
CichClli and Bonilla (Ref. 14) Compared with Eq. (8) 

mass-transport phenomenon was found by Roald end Beck (Ref. 16). They rotated a cylindrical 

magnesium specimen in hydrochloric acid of various concentrations and measured the dissolutioa 

rate a s  a fuoction of angular velocity. Beyond a certain acid concentration, hydroKen-bubble 

evolution on the surface became vigorous and resulted in sharply increased mass transfer rates. 

The authors attributed the incrkased rate to the stirring action of the hydrogen bubbles. The analop;\ 

to nucleate boiling appears to be excellent. In  fact, one can imapine liquid which i s  not super- 

saturated with hydrogen gas being brought discontinuously in contact with the surface (quenching) 

L?y r e m ~ v s !  C! bsbb!es fiiiiii the ~ u r f a c e ;  or thai itne b u s i e s  act  a s  roughnesses In increasing both 

frictional drag and mass transfer; or thet the formation of hvdrogen bubbles, through ntuss transport 

of vapor, provides an efficient means o i  reducing the degree of supersaturation of !~ydrogen gas in 

the liquid at  the solid surface. In thic connection, it should he noted that the analogy here i s  to 

saturated boiling, since the hydrogen hubbles (presumably) did not coilapse on the surface. In 

steady-state saturated boiling all of the heat !eaves the system a s  latent heat. Similarly, most of 

the hydrogen wansport from the surface may well have been accooated for es  hydrogen bobbles. 

A more instructive analcjis. which appears to have been overlooked, i s  dropwise conden- 

sation of vapors vs heat transfer from noncondensable gases. The heat-transfer coefficients in the 



fornier case tire of the order of hundreds of tirnes preater than in the latter case (Ref. 17); but in 

thin case the liquid droplets pow slowly, so  that they cannot be considered to agttate the vapor 

nesr the well very much (at least in comparison with the agitation required to obtain equal heat 

transfer in a noncondensing gas-solid system). Eucken (Ref. 18) attributes the increased heat- 

transfer rate to the reduction of the thickness of the layep of ~*spercooled vapor near the surface by 

diffusion into the droplets. 

One cannot attribute the increased heat-transfer coeffirients once condensation begins, 

solely, or even primarily, to the stirring effect of the droplets; in fact, a small amount of non- 

condensable gas in the vapor reduces the heat transfer enormously, as  i s  well-known. Eucken's 

explanation appears to be a reasonable one. In the same way that the droplet surfaces act  a s  

concentration sinks for diffusion of supercooled vapor, one may expect that the nucleate boiling 

bubbles act  an distributed temperature sinks for the diffusion of heat from the superheated liquid 

layer adjacent to the wall. 

From the preceding discussion, despite the widely-held concepts of the bubbles acting 

principally a s  turbulence pronloters, one i s  forced to conclude that the direction of the inequality 

(Eg. 6) is uncertain. Probably both latent heat t r~nspor t  within the bubbles and convective wansport 

between the bubbles are i~?ortant. 



!V, CMARkC"TRfS%:C BUBBLE QUANTITIES 

A. Quenching He& Flux 

I3efore preceding with the task of formulating expressions for the heht flow, i t  will be 

convenient to derive several ctiaracteristic bubble qunntities which will be needed later. One of 

these i s  the heat flux, qq, due to the quenching of dry spots on the wall. 

U'hen a bubble collapses in subcooled boiling, or whe~t it leaves the surface in saturated 

boiling, relatively cold liquid comes into contact with what was fonnerly an essentially dry spot 

on the wall. The following assumptions are made: 

l. The tiow of heat from the wall into the liquid is perpendicular to the wail. 

2 The liquid which corncp into caritact with the wail i s  at  a uniform 

temperature. 

These assumptions are equivalent to repi.~cing, for the short timc periods involved, the 

incoming liquid by a sequence of thin annular lamina. of radius R -; R(t!  ond thickness dR, a t  a 

timc t after the bubble begins to grow (Fig. 3). These lamina are initially at  a uniform temperature, 

say  T1 L Tsar characteristic of the liquid immediately above the bubbles. T h e  wall i s  initially 

a t  the mean wall superheat temperature T,, variations in the wall temperature being ignored in 

this  approximation. For subcooled boiling, the can be formulated in terms of the average 

bubble lifetime, 8, and period, 8'. a s  follows: Let 

EOUIVALEHT ANidULAR %A8 
INTRODUCED BETWEEN f 

Fig. 3. Vodel for Calculation of Quenching Heat F l u x  upon Collapse of a Single Rubble 

Page 6 



*ince no bubble i s  present at  times between 6 and 8'. At time I ,  a neH segment of area 

277 R ( t )  d R ,  i s  pliiceL in contact with the hot surface, where d ' 2  t 4 8. The temperature in 

this slab at time 8 ' i s  

where T is-the temperature a t  a distance y from the wall, and a i s  the thermal diffusivit~ of the 

liquid. This i s  the well-known solution for the temperature of a uni!orm, semi-infinite slab 

subjected to a step change in temperature on i ts  surface. 

The heat content of the slab is 

The total heat content of the liquid due to heat conduction upon collapse of one bubble is 

where the dot denotes differentiation with respect to time. Then, the total heat flux due to :his 

quenching merhanism i s  given by 

where,lV is the number of bubbles forming on the surface per unit area per unit time. 



i t  rernains, therefore, to find a suitable expression for R R ( t ) .  Gunthcr, in c ~ l c u l a t i n ~  

F ,  the time-average fraction of the s u r h c e  covered by bubbles, was able to approximate the 

integral 

within the accuracy of :he data, o r  about +S%. Voting the near syrn~letr). of the  gro~t ! !  and 

col lapse regions in subcooled boiling, a approximation i s  tried, sat isfying the boundary 

conditions (Eq. 10) 

R 
s - -  

2 t , < =  -- 8 '  , and ii = - 
R rn B P 

T h e  integral (Eq. 15) then becomes 

within 6.5% of the approximation (Eq. 15). This  i s  considered to be satisfactory for the present 

purpose. It may be noted that  a s i n e  approximation, 



i s  not a s  ~,ttisfisctot=y, giving t i  value  for the i n t e p n l  (Eq. 15) of 0.5 X ~ P ,  

and 

4 plot of q(h) is given in Fig. 1. -Sub.titutinp F:q*. ( i l l )  and ('3) in Eq. (14). 

: lc tu ;~l ly ,  the  bubble s l i d e s  a long the will1 as i t  groxs and c ~ ~ l l i ~ l t s c ~ s .  i icnce ,  the  a r e a  

swept  oat by the bubble  b a s & ,  instcat!  of br ing 2 %  circlr,  of r.t:!it!.: R,, is rorrghl \  an c l l i p se ,  the 

minor s rmi- i tx is  of v.hich i s  R m .  I f  tiit. buhblc i lvis is assunled to t r i ~ ~ e l  dt>wnstrrom at  0.8 the 

free-stream veloci ty  (Ref.  1). t he  rni~jop. sernicixis i s  epprorirnntel\ .  K m  4 0.4 I,... [ ' s i np  the r a t io  

Pope I2 



Fig. 4. Plot of \L (K), Eq. (22). vs K 

of the areas a s  a corre.tion factor, Eq. (24) gives 

8. Root-Mwn-Square Velocity Between Bubbles 

The time-average fraction of the surface covered by bubbles i s  assumed to be constant 

(steady-state boiling). If the liquid is sufficiently subcooled, the bubble radius-time curve is . 
symmetrical, corresponding to growth and collapse curves which are mirror images of each other 

(Ref. 1). t n  this event the number of bubbles collapsing at  any instant will equal the number 

growing; and i t  is possible to assign each growing bubble, which acts a s  a velocity source, to a 

neighboring collapsing bubble, or velocity sink. If viscous effects are neglected, the system at any 

instant can be considered to be a coplanar assembly of sources of velocity potential, each of 



which h a s  assoc ia ted  with i t  an equal sink. Two c a s e s  may be considered: (1) the distance between 

centers L i s  large compared to the average radius of the bubbles R , ,  in which c a s e  the bubbles 

may be considered to be point sources or s inks;  and (2) L i s  of the same order of magnitude a s  R,. 

In the former s a s e ,  the velocity potential a t  any point P i s  given by summing the contri- 

butions from each of the sources and sinks: 

2 ' where mi, the strength of the ith source. i s  equal to ( R  RIi  and ti i s  the magnitude of d e  radius 

vector ri from the ith source to  P (I:ig. 5). If. in addition. a uniform stream velocity V in the 

negative x direction is superimposed, Eq. (26) becomes 

The velocity a t  P i s  

-e 

where i i s  the unit vector in the x direction. The corresponding two-dimensional problem can be 

solved exactly ( s e e  Appendix); but for our present purposes, some simple qualitative considerstions 

a re  sufficient. Suppose the sources and s inks  to  be moved closer  together, while keeping iheir 

strengths and relative positions the same. If the external velocity t' i s  small compared to the  

velocity due to  the  bubbles, the velocity a t  P will vary a s  the inverse square of the dis tance 

between centers. T h e  dependence becomes l e s s  strong a s  V becomes relatively larger, until when 

V i s  very large compared with the velocity induced by the bubbles, the distance between centers  

has no effect, 

It  i s  rarely i f  ever true, however, that the radius of the bubbles is negligible eompamd 

with the dis tance between centers. .r\ssume now that the bubbles form a square net, that K = 1, 

Page 14 



Fig. 5. Model of Assembly of Bubbles Crowing and Collapsing on a Surface. Distance 
Between Centers L Large Compared with Mean Rubble Radius R,. Square. In-1,ine Net 

and since the p w t h  and collapse curves are symmetrical, that the radius of every bubble, 

Ra = ?; R,. Hence, the p w t h  rate i s  either f R , .  Confining ettentios to a unit cell of this  net, 

given by the perimeter ABCDEFGII (Fig. 6 ) ,  consider a thin lamina of liquid in contact with the 

heating surface, area of which is defined by the above perimeter. Since all velocities normal to 

the solid snrface are very small in this lamina, it may be assumed that a!! flow across the 

boundaries occurs at  the perimeter. The kinetic e n e r g  of the liquid within the lamina (Ref. 19) is 



FiR. 6. llodel of .l\ssembly of Rubbles Crowing and Collapsing on a Surface. Distance 
Retween Centers L Compared with llean Rubble Radius R,. Square, In-Line Net 

where pL and u are density and velocity, respectively, and d and d S  are volume and surface 

elements. The normal velocity across the boundary, -24 ' a n ,  vanishes by symmetry over the 

perimetar elements BC, DE,  FG, and f1.4. Over the remaining portions of the boundary it i s  

essentially k R, .  Similarly, 4 i s  here i ~ , d , .  Hence. the kinetic energy i s  n& R E  ri:dr, 

where dy i s  the lamina thickness. The root-rnean-square velocity i s  then 

1 1 - 1 - 
2 

I - F  

replacing the tangent by the chord. Note that Eq. (30) predicts the average liquid velocity to be 
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equal to the average bubble wall velocity, 2 R m , ' P ,  when L = R m e  

Consider now the case of K = 2, equival-nt to the assumption that the time Letwecn 

bubbles for a iven nucleation center is, on the average, equal to the bubble lifetime, Since half 

the nucleation centers are inactive at  any givcn titne, the situution may be represented by Fig. 7, 
- 

where the croeees represent temporarily inactive si tee,  and every collapsing bubble (-) must be 

surrounded by growing bubbles (+) to ~naintciin a constant fraction of the surface covered with 

bubbles. I t  cpn be seen that this case corresponds exactly to that in Fig. 6, except that now the 

diagonal of the unit cell L gives the distance between qowing end collapsing bubbles. 

x TEMPORARILY INACTIVE CENTER 

+ GROWING BUBBLE 

- COLLAPSING BUBBLE 

Fig. 7. Model o f  Assembly of Rubbles  Growing and CollapsinR o n  a Surface. Dishace 
Hetween Centers L Large Compared with %lean Bubble Radius ' ,. Staggered Net 



Equation (30) appl ies  equally weif to this  case. i t  requires only a slight extension of th i s  rcs,l-.on- 

in8 to show that i?ct. (30) describes the average iiquid velocity induced by the hubbies parallel 

t o  the wall, independent of K. 

Ilased on Eq. (30). the rrns velocity induced by the bubbles u i  is calculated in Table  I 
and shown in Fig. 8 for the da ta  of Gunther (Ref. I ) ,  reproduced here a s  Figs. 9 through 11. 

These  runs investigated the effect of liquid subcooling, liquid velocity and heat flux in a trans- 

parent flow channel 1 . 4  in. square in c ross  section divided by a heating strip 3,'16-in. wide. The 

liquid was d e p s s e d .  distilled water a t  slightly abdve atmospheric pressure. As expected, u i  

increases in each c a s e  a s  the upper limit of nucleate boiling i s  approached. The difficulty of 

obtaining accurate  bubble counts  i s  shown in Fig. 8, where u i  calculated for supposedly identical 

conditions in Figs. 10 and 11 check within 107. but between Figs. 9 and 11 check only within 50%. 

ar, , suecaju~c, r,- 5,-P 
.Q eo too 12.0 1- I e o  +CQ LOO 

Fig. 8. RIIS V e l o c i t ~  induced by Rubbles in Gunther" Experitnents 
(Figs. 8 through 101, Calculated by Eq. (30) 



Group I ' 

--- 

! a 
Root-mwn-square ve loc i ty  induced by the huhbles, given by Eq. (30). Burnout. 

I b ~ y d r a u l i c  radius, a - 0.125 in. Extrapolated. I 
i Ef fec t  of subcooling (Fig. 9) g / A  2 75 B t u  (sq i n  ) (sec); V 10 ft sec. I 

I Eq. (42). J Colculoted from Ref 7, assuming that Tw i s  a function only o f  the  heat f lux.  Corrections I 
" Ef fec t  of weioclty (Fig 10) cJA 3 75 6 tu  (sq in ) (sec); 1 TIUb 150 F; P M tn Hg 

!or slight ef fect  of  p iessute (50 i n  tig) mode by assuming the excess vopor pressure 

( $ )  due  to the w o l l  superheat fo be ronstont over B small range of ry r tem pressure. 
E f fec t  of heor transfer rare (Ftg 11) V 10 f t lsec;  i t  TIvb 155 F; P 50;nHg 
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R- LWERAGE MAXIMUM BUBBLE RADIUS 

OOLS 500 

0005 1 0 0  

Fig. 9. .Canther's Data (Ref. 1 and Fig. 11): Effect of Subcooling 

COOLmT VELOCITY V ,  I f / -  

Fig. 10. Gunther's Data (Ref. 1 and Fig. 16): Effect of Velocity 



HEAT-TRIWSER PATE, Btu/q n w 

Fig. 11. Gunther's Data (Ref. 1 and Fiu. 17): Effect of Heat Tranafer Rate 



V. SINGLE-PHASE TURBULENT CORE 

At this point it i s  instructive to consider the temperature and velocity distributions in the 

single-phase turbulent core liquid, necesearily restricted here to subcooled boiling, since in 

saturated boiling the two-phase region extends throughout the tube. 

Regin with the momentum equation, averaged with respect to time, for turbulent flow of a 

single-phase fluid in a tube: 

- 
where rt i s  the total shear s t ress  at  t'ae wall, a i s  the pipe radius, and t i 'v '  represents the 

time-averaged product of the veiocity fluctuations in the x and y directions. Similarly, the energy 

equation i s  given by 

- 
where T'u ' represents the time-averaged product of the fluctuations of the t ~ m , ~ = i + l t \ m  and the 

velocity normal to the wall. The physical properties are here assamed constant, since, by the 

nature of nucleate boiling, the wall temperature i s  not far removed from the bulk liquid temperatnre. 

Also, the changes in the temperature and velocity profiles occur quite close to the wall, 

s o  that y/a can be neglected compared with unity. The usual assumption of the validity of the 

Reynolds analogy i s  made, eo that 

H e r e  P r p  i s  a turbulent Prandtl number,  equiveIent  to the ratio of t h e  eddy di l lusivit ies  for heat 

and momentum transfer and may be assumed to be unity for water and other nonmetallic liquids 



(cf. Ref. 20). Also, the n~oleculur shear-stress and heat-transfer terms are ussurned to be negli- 

gible wi distances far irorn the wall, Rith these assumptionu it i s  possible directly to derive the 

well-established dimensionless equations (e.g., Refs. 20, 21, and 22) lor the turbulent core: . 

and 

and K i s  a univeruel constant which has been empirically determined to be about 0.4. The 

distance y~ represents the dividing line between the turbulent core and the two-phase wall layer, 

and is  of the order af R,, the mesa maximum bubble radius, It wi l l  be rassumed that the mean 

velocity V and the mean temperature TL occur a t  the same distance from the wall, y,. 



Yow, some experimental evidence exists (Ref. 6 )  that Eq. (35) holds all the way to the 

wall in subcooled, forced-convectio~ nucleate boiling systems, or 

Kith this assumption it i s  possible to estimate the temperature T I  at  the edge of the 

turbulent core. Combininp k:qs. (3.1). (35) and (39) gives 

But since the Stanton number, CH, i s  given by 

F4s. (391, (401, and (41; yield 

This equation may be tipplied to Gunther's data (Figs. 8 through 10) to estimate an approxi- 

mete time-average liquid temperature a t  the edge of the two-phase wall layer. Assume that the 

mean temperature occurs at the centerline of the flow passage or at a distance corresponding to 

the hydraulic radius. Note that this assumption ie-not strictly correct, since the only heat input 

was from a thin stainless steel strip suspcirded alc,ng the ceriterline of tlre 'hanilel; but csince the 

temperature in the turbulent core is relatively rnilorm, i t  i s  probably ~ceeptable .  Ki th  this 

assumption se t  yo = a ,  the hydraulic radius, and y 1  = K, in F:q. (42). The wall temperature, 
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T , ,  was calculeted from Cunther and Kreith's surface temperature measurements (see Fig, 4 of 

Ref3 11, ~ i seuming  that T, a i  a given flux is  independent o i  the iiquid veiocity and subcooling. 

A correction was made for the slight effect of pressure (50 in. Hg) on the wall superheat by 

assuming the vapor pressure difference corresponding to the wall superheat to remain constant 

over this small range of pressures. Essentially this i s  equivalent to assuming that the critical 

bubble radius, which is  determined by the radius of the active cucleating cavities on the surface, 

remains constant. The calculated values of TI are shown in Table 1 and Fig. 11 a s  a function of 

liquid subcooling, liquid velocity, and heat flux. It i s  most interesting to note that in each ser ies  

of runs T I  r ises steepl; towards the saturation temperature (239OF') as  burnout i s  approached. 

Thus, the maximum heat flux coincidts with the appearsnce of a fairly thick layer of warm water 

next to the wall. This seems to indicate that at conditiona far removed from burnout the principal 

r e s i s* r~ce  to heat transfer i s  in the two-phase wall layer; but a s  the flux i s  increased, or the 

bulk velocity reduced, or the subcooling decreased, the resistance of the turbulent core becomes 

appreciable. (See Fig. 12) Ruwout occurs when the core i s  unable to remove the heat a* faet as 

it can be transmitted by the wall layer (qL21 in Ep. (7) ), resultinn in a marked increase in bubble 

s ize  and population, which in turn resulta ia bubble coalescence. 

Support ior this concept i s  found in Gunther's (Ref. 1) empirical correlation of the maximum 

heat flux with liquid velocity and temperature: 

The form of this equation strongly suggests that the maxinium heat flux i s  equal to the product of 

a turbulent heat-transfer coefficient, which i s  proportional to the liquid velocity to a power between 

0.5 and 0.8 and the mean temperature difference between the saturation temperature, characteristic 

of the liquid near the top of the bubbles, and the bulk liquid. From this point of view, the two- 

phase wall layer a t  maximum heat flux acts a s  II completely r o u ~ h  wall. and the transfer of heat 

from this rough wall i s  proportional to the product of a turbulent heat transfer coefficient and a 

t~rnperaturz driving force. At  constant bulk liquid velocity and subcooling, the "roughness** of 

the wall adjusts itself to the heat flux; but a t  burnout the increase in "roughness*' can no longer 

match the increase in heat flux. 



&Gu), SUBCOOLING, r,,- c, 'F 
W 80 lQ8 120 140 160 180 lOQl 

V ,  BULK LIQUID VELOCITY, f i ; ~  

Fig. 12. Temperature a t  Edge of Two-Phase Layer in Gunther's Experiment. 
(Figs. 9 through 11). Calculated by Eq. (42) 



MI. HEWS" FLOW THROUGH THE TWO-PHASE WALL LAYER 

A inner Layw Weat Flew 

It i s  now pqssible to formulate some rather speculative expresaions for the heat flow in 

the firet end third eteps of the three-step model proposed in Sec. 11. The second step i s  not 

considered here, in view of the uncertainty concerning the magnitude of latent heat transport. For 

the first step, the heat flow from the wall to the edjacent liquid i s  given by Eq. (4). The quenching 

heat flux, q , i s  given by Eg. (25). Proceed now to calculate the stirring heat flux, qb,, assuming 
9 

a form similar to Eq. (32): 

where 

It may be noted ' at  (1 - 2 K  F) i s  the approximate fraction of dre heating surface which i s  not 

periodically covered by bubbles. The temperature fluctuatioa T'and the velocity fluctuation V '  

are made up of components due to the bubbles and to the diffusion of turbulence from the bulk 

stream. For the purpose8 of our simple analysis, however, i t  will be assumed that turbulent 

eddies diffusing towards the wall from the main stream are considerably weaker very near the 

wall than the eddies ~roduced by the bubbles themselves. This i s  reasonable, in view of the 

intense microconvection adjacent to the wall induced by the growing and collapsing bubbles. 

Further, i t  i s  assumed that the molecular heat conduction term rapidly becomes negligible a short 

distance from the wall, SO that Eq. (44) becomes 

It  i a  now nececssttry to fall back npon a dimesrsional approach, i n  which the time-average product 
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ict Eq. (46) i s  assumed to be p~oportirrsal to the product of a churacteristic velocity and a charac- 

teristic temperature difference, The naturai choice i s  

where u l  i s  descriptive of the mean velocity fluctuation due to the bubbles, T, - TL i s  descrip- 

tive of the temperature driving force, and pt i s  an empirical constant. 

Combining Eqs. (25). (44). (461, and (47) gives the following exprenaion for the total heat 

flux: 

I t  i s  of interest to see  whether this expression can be fitted to Gunther's data by an 

appropriate choice of P I ,  the empirical proportionality constant. For our simple calculation, 

assume that K, the ratio of the bubble period to the bubble lifetime, i s  1.5, since a bubble 

frequency of about 1000 cps and a bubble lifetime of 6.4 x 10-' sec have been reported (Ref. 7) 

in subcooled pool boiling (q, = 2.0 Btu/(sq in.) (sec); TL = 98OF). The calculations of the 

tpenching heat flux are given in Table 2; with the choice PI  = 0.025 to give the best fit, 

reasonably good agreement i s  oblained with Cunther's smoothed data (Table 3 and Figs. 13 and 

14). The data investigating the ef fec t  of bulk liquid subcooling are not included, since at 

moderate subcoolings some of the bubbles detach from the wall, wit5 the result that the extent of 

the two-phase wall layer becomes uncertain. 

Referring to Figs. 13 and 14, i t  i s  seen that a reasonably good fit exists  between the 

predicted and the experimental total heat flux. Of interest sre the following points: 

L The quenching heat flux, g i s  appreciable but is lees  than the convective 
9' 

flux q,, except a t  high bubble populations, where the fraction of the surface 

which is never covered by bubbles becomes quite small (Table 3). 



In both cases, the predicted qg falls below the experimental qS close to the 

burnout point. This i s  partly because /, the fraction of the surface which i s  

in occasional contact with bubbles, increases sharply (and hence g, 

decreases) a s  burnout i s  approached; and partly because T I  r i ses  rapidly 

near the burnout point, a s  noted previously, so  that the quenching heat flux 

does not increase at  the same rate a s  does ( f  - F), the fraction of the 

surface being quenched a t  any inotsnt (cf. Sec. IV). ?his i s  to say that the 

bare spotF are quenched with wanner liquid a s  burnout i s  approached. 

3. The predicted total flux i s  low at  high stream vetocities and relatively small 

(F < 0.02) bubble populations (Figs. 10 and 13). This might be expected, 

from the neglect of the stream-induced turbutence in Eg. (48). 

B. Outer Layer Heat Flow 

Similarlv, expressions for the third step of the heat flow model, Fq. (7). from the edge of 

ihe two-phase wtrll layer into the turbulent core, can be speculatively constructed. 

To begin with, it will be assumed that the equations for the turbulent core (Fqs. 31, 32, 

and 33) are also valid at  the edge of the two-phase wall layer. The problem then resolves itself 

into determining the increased drag due to the bubbles. In the outer portion of the two-phase wall 

layer, which i s  asburned to be thin compared with the hydraulic radius, Eq. (32) becomes, upon 

neglecting molecular conduction 

qt = - pLCL T'v' = - (Ti + T i )  (v ;  + v: )  (49) 

where Ti and Ti are the temperature fluctuations due to the bubble and the stream motion, and 

v i  and v b  are the corresponding velocity fluctuations normal to the wall. Actually, there i s  

undoubtedly an interaction between the bubbles and the turbulent core; but for this simple analysia 

i t  will be assumed that the time-average product in (Eq. 49) can be decomposed into ihe sum of 

two time-average terns: 



VeAle 2. CeEcuEeti~n af Quenching Heat Flux From Gunkher's Date (Ref* '8) 

' Eq. (25) y ( K )  calculated from Eq. (22) (Fig. 4). 

b%e Table 1 and Figs. 9,  In, and 11. 





Table 3. Ca lcula t ia~  of Neat Flow From Gunther's Data (Ref. 1) 

Group I 

I - 
Group II 

I a K ,  the ratio of the bubble period to bubble lifetime, taken to be 1.5. Sce Table 2. d ~ q .  (58). N P  D l f  ; D 0.25 in. 1 
E q  (48). 0( chosen to pire best fit; b,  = 0.023. ' Eq. (57). 0.575 . 1 

' S e e  Table 1 and Figs 10 and 1 1  
-- -- --- - -- - -- - - -- - --- -- - -- - - - - - --- - - -- - - -- - - -- -- --- 





Fig. 13. Inner Layer Model Calculated lor Gunkher" Date (Fig. 10) 



Fig. 14. Inner Layer Model Calculated for Guntherva Data (Fig. 11) 



(2)  where qbe and qy' are the heat fluxes due to the stirring action o i  the bubbles and of the stream. 

respectively. The analogy to the hypothesis of Rohsenow and Clark (Ref. 8) that the heat flux in 

convective boiling systems i s  the sum of the nonboiling convective heat flux, plus the pool boiling 

heat flux at  the same surface temperature, may be noted. It will be assumed that 9\2) is the non- 

boiling convective heat flux in the same system. Substituting i2q. (331, and assuming the eddy 

diffusivities for momentum and heat transfer to be equal, 

From Egs. (35) and (391, 

It remains to choose en appropriate expression for u i  v i .  If the heat transfer occurs 

entirely at the tops of the bubbles (latent heat transport), ooe would expect the mean bubble wall 

velocity to be applicable: 

If, however, the heat transfer between bubbles i s  the major factor, one would expect the 

mean velocity induced by the bubbles to be more appropriate: 



Hence, se t  

where P2 and P3 are empirical constants. Combining (52). (53). and (56). 

2 4 
q = g + 2 )  = g 2  + * ( T T )  ( )  (L) (57) 

I -  F 

The nonboiling flux i s  determined from a standard correlation such a s  the Sieder-Tate equation: 

where p~ and pw are the viscosities evaluated at  TL and T,, and the Reynolds numhr  i s  

based on the tube diameter and the mean bulk liquid velocity. 

Once again. values of the empirical constants (P2 = 0.083; p3 = 0.575) were chosen in 

an attempt to fit Gunther's smoothed data (Figs. 10 and 11). The results are calculated in 

Table 3 and presented in Figs. 15 and 16. it i s  seen that there is reasonably close agreement 

between the experimental and the predicted total heat fluxes. 



Fig. 15. Outer Layer Model Csrlcutated for Gunther's Data (Fig. 18) 



Fig. 16. Outer Leycr Model Celeulated for Gunther's Data (Fig. 11) 



The heat flow expressions derived in the preceding section are highly speculative, in view 

of the many simplifying essumptions. Considerably more date arc required before they can be put 

on a firm footing. On the other hand, the three-step model proposed in Sec. 11 i s  not considered 

to be speculative; it is ,  in fact, a simple statement of the physical situation in highly subcooled 

nucleate boiling. In two previoua papera (Refs. 9 an4 10) turbu:ent convection was shown probably 

to control in the removal of heat from the bubble condensinR aurface; further evidence i s  adduced 

in Sec. 111 that latent heat transport i s  not negligible in comparison with the convective heat flow 

through the liquid between the bubbles. It i s  interesting (and perhaps coincidental) that the vari- 

ation in maximum heat flux with pressure in saturated pool boiling can be reasonably well fitted 

by an expression baaed on latent heat transport. It i s  similarly interesting (and physically 

reasonable) that the temperature at the edge of the two-phase wall layer in highly subcooled 

ouc:ctlta 'uoi:inlJ r ia ra  eharply toitaide the s i i t~ ia t ioa  temperat.~:t as Eur,cut is epproeched. ahen 

the bubbles no longer grow into a zone of cold liquid, one may expect their s i r e  and number to  

increase rapidly and an instability to se t  in. Experimental measurements of the local bubble 

parameters in nucleate boiling a n  sorely needed. '%ch measurements are, in some cases,  quite 

difficult; but a great deal could be learned from temperature and velocity information taken in 

simplified systems, such a s  one, two, or three bubbles growing and collapsing on a surface, 

ACKNOWLEDGMENT 

The major portion of this work was done at Rose Polytechnic Institute under a grant 

from the National Science Foundation. Ernest R. Davidson and Glenn A. hlilee assisted in the 

calculatione. 



o = hydraulic radius of tube. 

B = parameter defined by Eq. (23). 

b = parameter defined by Eq. (23). 

CH = Stanton number. 

CL = specific beat of liquid. 

F = time-average fraction of surface covered by bubbles. 

f = fraction of surface periodically covered by bubbles. 

H = enthalpy increase of liquid due to  beat conduction upon collapae of one bubble. 

-P r = unit vector parallel t o  the wall. 

kL = thermal conductivity o f  l iquid  

k = modulus of elliptic function (Appendix A). 

k ' = quarter period of elliptic function (Appendix A). 

K = parameter defined by Eq. (17). 

L = distance between adjacent nucleation centem. 

rn = strength of spherical source of velocity potential. 

m' = strength of line source of velocity potential. 

n = normal to  boundary (Eq. 29). 

N = number of bubbles per unit wall area per unit time. 

p = pressure. 

Pr = Prandtl number of liquid. 

Prg = turbtllrut Praadtl number (Eq. 451, 

qb = heat flax from surface beneath bubbles, 



NOMENCLATURE (Csnt'd) 

qbc = heat flux due t o  stirring of bubbles (Eq. 49). 

46 = heat flux from surfaces between bubble*. 

q.(2) = heat flux da.. t o  stirring of stream (Eg. 51). 

qq = querrching heat flux. 

qg = total beat flux. 

' )  - latent heat  flux. 

ql = heat flux from portion of surface periodically covered by bubbles. 

qw = heat flux t o m  portion of surface which is  a d  periodically covered by babbler. 

R = bubble radius. 

R, = maximum babble ndias.  

Re = stream Reynolds number. 
8 

R, = average babble wall velocity. 

r = radial distnnce. 

s = parameter defined by (Eq. 17). 

S = surface. 

t = time. 

T = temperature. 

7'' = f~uctuation in temperature. 

. T' = dimensionless temperature, defined by Eq. (38). 

To = mean temperature of bubble evaporative surface. 

TI = mean temperature a t  the edge of the two-phase wall layer. 

TP = mean t empra twe  of bubble condensing surface. 

Tt = mean bulk liquid t e m p r a t e .  

TSat = saturation temperatlge. 



T, = wall temperature, 

V = mean stream velocity. 

v' = fluctuation in velocity perpendicular to wall. 

u = velocity to the wall. 

u' = fluctuation in velocity parallel t o  wall. 

u i  = root-mean-square velocity parallel to the wall induced by bubb!es, defined by 

Eq. (30). 

u ' = dimensionless velocity, defined by Eq. (36). 

x = distance parallel to wall. 

y = distance from wall. 

yl = thickness of two-phase wall layer (% R,). 

y ' = dimensionless distance, defined by Eq. (37). 

z = complex position variable. 

a = thermal diflusivity of liquid. 

4, PZ,  P3 = empirical constants. 

E = accommodation coefficient for evaporation or condensation. 

'7 = volume of liquid. 

5 - parameter defined by Eq, (17). 

K = universal velocity distribution constant, Eq. (34). 

6 = bubble lifetime. 

8' = bubble period from a given nucleation center. 

X = latent heat of vapwization. 

= viscosity of liquid evaluated at bulk temperature. 

/J = viscosity of liquid evaluated at well temperature. 



NOMENCLATURE (Cont'd.) 

v = kinematic viscosity. 

= parameter defined by Eq, (23). 

pL = density. 

T - shear stress.  

- velocity potential. 

t,b (1;) - function defined by Eq. (46). 

w - function defined by F4. ( A d )  or (A-5). 

V - gradient operator. 

Superscripts 

+ = vector quantity. 

- 
( ) = time average. 

( )' = fluctuation (unless otherwise defined). 

+ = dimensionless quantity. 

( ) = derivative with respect to time. 

(1) = heat flow from inner to outer portion of wall layer. 

(2) = heat flow from outer partion of wall layer to turbulent c&e. 

( )* = heat flow calculated on basis of actual heat transfer surface. Absence of star 

denotes heat transfer calculated on basis of total wall area. 

Subscripts 

e = average. 

b = bubble. 



bc = convection due to bubbles. 

c = ~ouvecLiou. 

L = bulk liquid. 

m = maximum. 

q = quenching. 

sat = saturatim. 

C = total. 

IP = wall. 

w = wetted. 

1 = edge of two-phase wall layer. 
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APPENDIX 

Velocity Due to a Two-Dimensional Array ef Growing and Collapsing Bubbler 

It i s  desired to calculate the velocity parallel to the wall of the liquid at  any point 

between an array of growing and collp-sing bubbles. The following assumptions are made: 

1. The flow i s  irrotational, viscosity of the liquid being neglected. 

2. The flow is two-dimensional, components perpendicular to the wall being 

neglected. 

3. The bubbles can bc considered to be point velocity sources and sinks, the 

distance between bubbles being large compared to their radii. 

4. 'Ria  b ~ b b l e o  caii be ciinsldered to foim rrn infinite, ngulur net of equal 

sources and sinks, the growth and collapse radius-time curves considered 

to be symmetrical. Each collapsing bubble will be surrounded by growing 

bubbles, 60  hat the net can Le rtprtsented a s  in Figs. 5 and 7, when L 
is the distance between adjacent bubble centers. We are thus interested in 

the potential distribution about an array of line sources, regularly spaced 

over the wbole x,y plane. This potential i s  generated by taking the logarithm 

of an elliptic function, for such a function has  zeros and simple poles 

regularly spaced on the complex  lane. l 3 e  spacing and distribution of the 

line c t  -rges in each cell will determine the elliptic function to be used. If, 
in addition, a uniform stream velocity v in the negative x direction, i s  super- 

imposed, the appropriate ~o ten t i a l  term must be added. For the array given in 

Fig. 5, the complex velocity ~ o t e n t i a l  w i s  given by (Ref. 23): 

where k i s  the modultrs of the elliptic function, and k' i s  one-quarter of the real period. For a 

square net, b' = 1.854, and k = 0.707. The source ebength rn'for a linesource array of bubbles 

is  



and 

On the other hand, if the array i s  the sort given in Fig. 7, the potential is 

R e  velocity u a t  any p i n t  r of the complex plane i s  found by differentiating the complex 

potential (Ref. 19) 

where the bar here denotes the complex conjugate function. Equation (A-61, together with either 

Eq. (A-1) or (A-43, constitutes the solution of the problen. 


